Outcome for the neonate

Michael Weindling

Consultant Neonatologist, Liverpool Women’s Hospital

Professor of Perinatal Medicine, University of Liverpool
Institute of Translational Medicine
Department of Women’s and Children's Health
1. Context
2. Study #1
3. Study #2
Synaptogenesis in the mammalian cortex

Mean IQ ± 1 SD

Data from Bayerische Entwicklungsstudie (Bavarian Longitudinal Study)

Data from Epicure

(With thanks to D Wolke and N Marlow)
Study #1
Outcome of ELGAN after introduction of a revised protocol to assist preterm infants in their transition to extrauterine life

Short title: Outcome of ELGAN after gentle delivery room care

Katrin Mehler, Judith Grimme, Julia Abele, Christoph Huenseler, Bernhard Roth, Angela Kribs,
University of Cologne,
Children’s Hospital, Department of Neonatology

Acta Paediatrica; Dec 2012
Background

“Transition/Adaptation in the Delivery Room and Less RDS: Don’t Just Do Something, Stand There!”

Jobe A. Newborn and Infant Nursing Reviews, 2006; 6: 76

“First golden minutes” emphasising gentle delivery room approach for the ELGAN

Vento M et al. Neonatology 2009; 92: 286
Background

- Hypothesis: gentle delivery room management avoiding mechanical ventilation improves neonatal mortality and morbidity in ELGANS
- To investigate, delivery room management protocol revised in 2001
- “Protocol focussed on avoiding mechanical ventilation during first hours of life and on supporting preterm infants’ own vitality”
- Historical controls
Controls

- 44 infants <26w born between January 2000 and November 2001

Study group

- 164 inborn infants <26w born between November 2001 and December 2007
Cologne 2001 - 2007

<table>
<thead>
<tr>
<th></th>
<th>22w</th>
<th>23w</th>
<th>24w</th>
<th>25w</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>N</td>
<td>S</td>
<td>N</td>
<td>S</td>
</tr>
<tr>
<td>Study</td>
<td>Study</td>
<td>Ctrl</td>
<td>Study</td>
<td>Ctrl</td>
<td>Study</td>
</tr>
<tr>
<td>N</td>
<td>13</td>
<td>4</td>
<td>57</td>
<td>10</td>
<td>53</td>
</tr>
<tr>
<td>Death</td>
<td>62%</td>
<td>50%</td>
<td>19%</td>
<td>50%</td>
<td>13%</td>
</tr>
<tr>
<td>BPD</td>
<td>40%</td>
<td>100%</td>
<td>28%</td>
<td>40%</td>
<td>9%</td>
</tr>
</tbody>
</table>

LWH: 2007-2010

<table>
<thead>
<tr>
<th></th>
<th>22w</th>
<th>23w</th>
<th>24w</th>
<th>25w</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=9</td>
<td>n=24</td>
<td>n=41</td>
<td>n=43</td>
<td>n=104</td>
</tr>
<tr>
<td>Death</td>
<td>9</td>
<td>21</td>
<td>30</td>
<td>18</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>87%</td>
<td>73%</td>
<td>41%</td>
<td>75%</td>
</tr>
<tr>
<td></td>
<td>22w</td>
<td>23w</td>
<td>24w</td>
<td>25w</td>
<td>All</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>Study</td>
<td>Ctrl</td>
<td>S</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>N</td>
<td>13</td>
<td>4</td>
<td>57</td>
<td>10</td>
<td>53</td>
</tr>
<tr>
<td>No antenatal</td>
<td>38%</td>
<td>75%</td>
<td>9%</td>
<td>10%</td>
<td>6%</td>
</tr>
<tr>
<td>steroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18%</td>
</tr>
<tr>
<td>C-section</td>
<td>23%</td>
<td>75%</td>
<td>88%</td>
<td>90%</td>
<td>79%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>93%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>91%</td>
</tr>
</tbody>
</table>
Management in Delivery room and <72h

<table>
<thead>
<tr>
<th></th>
<th>S22</th>
<th>C22</th>
<th>S23</th>
<th>C23</th>
<th>S24</th>
<th>C24</th>
<th>S25</th>
<th>C25</th>
<th>sAll</th>
<th>cAll</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>13</td>
<td>4</td>
<td>57</td>
<td>10</td>
<td>53</td>
<td>12</td>
<td>41</td>
<td>18</td>
<td>164</td>
<td>44</td>
</tr>
<tr>
<td>CPAP only</td>
<td>0</td>
<td>100%</td>
<td>0</td>
<td>30%</td>
<td>0</td>
<td>50%</td>
<td>5%</td>
<td>61%</td>
<td>1%</td>
<td>55%</td>
</tr>
<tr>
<td>CPAP + surfactant</td>
<td>85%</td>
<td>0</td>
<td>72%</td>
<td>0</td>
<td>79%</td>
<td>0</td>
<td>66%</td>
<td>0</td>
<td>74%</td>
<td>0</td>
</tr>
<tr>
<td>Intubation + surfactant</td>
<td>15%</td>
<td>0</td>
<td>28%</td>
<td>60%</td>
<td>19%</td>
<td>50%</td>
<td>26%</td>
<td>33%</td>
<td>24%</td>
<td>41%</td>
</tr>
<tr>
<td>Mechanical ventilation <72h</td>
<td>77%</td>
<td>50%</td>
<td>47%</td>
<td>90%</td>
<td>52%</td>
<td>66%</td>
<td>46%</td>
<td>72%</td>
<td>51%</td>
<td>72%</td>
</tr>
</tbody>
</table>
‘Revised protocol’

Prenatal

- Antenatal steroids and antibiotics; 2nd dose after 14d
- All fetuses from 22 w
- Delivery by Caesarean section (modified Misgav Ladach method) by an experienced obstetrician
 - extraction of complete amniotic cavity containing fetus and placenta gently from uterus
- Placenta held above infant for approx 2 min; delayed cord clamping
‘Revised protocol’

Delivery room management

- Pre-warmed mattress, radiant heater and wrapped in a polyethylene cover
- Oral cavity suctioned only if blood or meconium stained amniotic fluid
- Baby received sustained CPAP via face mask with variable flow CPAP device to recruit lung volume
- Pulse oximeter to monitor heart rate and O₂ saturation
- Gas flow humidified and warmed to 38°C
‘Revised protocol’

- FiO2 initially 0.6, gas flow 15 l/min, PEEP ~8 cm H2O
 - Adjusted according to HR, resp effort, SpO2
- Gastric tube inserted after 10 min to prevent abdominal gas accumulation
‘Revised protocol’

- Target HR >100/min after 1½ min
- If HR <100/min after initiation of CPAP, flow increased by 2L/min (repeated x3 for 30 s)
- If HR <100/min after 3 min, sustained inflation (30 s) or bag and mask ventilation (repeated x3, pressure limit 25, if unsuccessful 30cm H2O)
- If HR remained <100/min, intubated
- Target SaO2 >85% after 10 min
- Intubated also if infant not breathing after gas flow increased to max 20 L/min (i.e. PEEP 14 cm H2O) and sustained inflation and/or bag and mask ventilation had been tried
‘Revised protocol’

- Criteria for surfactant application evaluated after 10min. Included:
 - clinical signs of severe dyspnoea (defined by Silverman Score >5
 - and/or FiO2 >0.3
 - and/or >15 L/min of flow to keep SaO2 >85%.

- Survanta by thin ET catheter during spontaneous breathing with CPAP at ~30 min
‘Revised protocol’

- Infants then placed in incubator and connected to infant flow nCPAP generator (EME, Brighton) or Babylog 8000 ventilator
- All intubated infants received HFOV following a high volume strategy (MAP 8-10 cm H2O, frequency 6-8Hz)

Protocol revised in 2008 after publication of studies by Wang and Escrig

- changed initial FiO2 from 0.6 to 0.3
- changed target HR from 100 to 120/min after 3 min
Conventional management during control period (1Jan 2000 - 14 Nov 2001)

- Prenatal management included antenatal steroids
- Gentle extraction with intact amniotic sac and late cord clamping not performed routinely
- Resuscitation according to ILCOR guidelines
- If infant not breathing, PPV with FiO2 0.6 applied
- HR re-evaluated after 30 seconds
Conventional management during the control period (1Jan 2000 - 14 Nov 2001)

- If HR <60/min chest compressions applied
- If HR 60-100/min PPV continued, intubation considered
- If infant breathing, stabilized with CPAP
- Infants requiring surfactant were intubated for surfactant administration and ventilated
- HFOV using high volume strategy
After admission to NICU: Conventional management

- Intubation if recurrent apnoea and bradycardia or respiratory failure (pH < 7.20 or FiO₂ > 0.5 to maintain paO₂ in range of 45-60 mmHg for >2 h)
- No strict limits for paCO₂ provided that pH ≥ 7.20
- Arterial hypotension (MAP < GA in weeks) treated if evidence of poor tissue perfusion
- All patients screened for PDA during first 48 h. PDA with L-R shunting, treated with indomethacin
• IV fluid started with 70-80ml/kg/d.

• Enteral feeding started on first day with colostrum, if available.

• Minor changes during the study period: daily protein intake raised on D1 from 1 to 3 g/kg/
Study #2

- Now a study from my own department…

- TIPIT
 - Rationale
 - Methods
 - General results
 - MRI results
A Randomised Controlled Trial of Thyroxine in Preterm Infants Under 28 weeks’ Gestation

Funder: Medical Research Council, UK
Sponsor: Liverpool Women's NHS Foundation Trust & University of Liverpool
Evidence of hypothyroxinaemia is common among infants born before 28 weeks’ gestation (69%).
Studies of thyroid supplementation in premature babies

Review:
- Thyroid hormones for preventing neurodevelopmental impairment in preterm infants

Comparison:
- 01 Thyroid hormones versus control (All eligible studies)

Outcome:
- 09 Mortality to discharge

<table>
<thead>
<tr>
<th>Study</th>
<th>Thyroid hormone</th>
<th>Control</th>
<th>Relative Risk (Fixed) 95% CI</th>
<th>Weight %</th>
<th>Relative Risk (Fixed) 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amato 1989</td>
<td>2 / 22</td>
<td>2 / 22</td>
<td></td>
<td>6.5</td>
<td>1.00 [0.15, 6.48]</td>
</tr>
<tr>
<td>Chowdhry 1994</td>
<td>1 / 11</td>
<td>1 / 12</td>
<td></td>
<td>3.1</td>
<td>1.09 [0.08, 15.42]</td>
</tr>
<tr>
<td>Smith 2000</td>
<td>2 / 29</td>
<td>3 / 18</td>
<td></td>
<td>12.1</td>
<td>0.41 [0.08, 2.24]</td>
</tr>
<tr>
<td>Vanhole 1997</td>
<td>3 / 20</td>
<td>3 / 20</td>
<td></td>
<td>6.8</td>
<td>1.00 [0.23, 4.37]</td>
</tr>
<tr>
<td>van Wassenaer 1997</td>
<td>14 / 100</td>
<td>21 / 100</td>
<td></td>
<td>68.5</td>
<td>0.67 [0.36, 1.24]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>22 / 182</td>
<td>30 / 172</td>
<td></td>
<td>100.0</td>
<td>0.70 [0.42, 1.17]</td>
</tr>
</tbody>
</table>

Test for heterogeneity chi-square=0.87 df=4 p=0.9291
Test for overall effect Z=-1.36 p=0.17

Osborne 2005; Cochrane review: Thyroid hormones in preterm infants
Subgroup analysis: Van Wassanaer et al. NEJM 1997

- Developmental score for T4 group with n = 13
- Developmental score for Control group with n = 18
- Developmental score for T4 group with n = 69
- Developmental score for Control group with n = 57

p = 0.01
p = 0.03
TIPIT study

- Primary objective: To determine whether early thyroxine supplementation in infants <28w improves brain size at term equivalence

- All infants received either levothyroxine (LT4) or placebo until 32 w corrected gestational age
Primary outcome

Width of subarachnoid space as indirect measure of brain size at 36 w corrected gestational age
<table>
<thead>
<tr>
<th></th>
<th>Thyroxine N = 75</th>
<th>Placebo N = 78</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (males)</td>
<td>44 (58%)</td>
<td>45 (58%)</td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>821 ± 184</td>
<td>842 ± 200</td>
</tr>
<tr>
<td>Gestational age (w)</td>
<td>26 ± 1.4</td>
<td>26 ± 1.3</td>
</tr>
</tbody>
</table>
Secondary outcome: Diffusion Tensor Imaging (DTI)

- Quantitative assessment of white matter development before myelination visible on conventional MRI by measurement of Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA)
- ADC ↓ and FA ↑ suggest water diffusing in fewer directions because of barriers to diffusion
- (The more myelinated the structure, the lower the ADC and the higher FA)
FA ADC Diffusion Direction

Red = L/R
Blue = I/S
Green = A/P
Summary of primary MRI results

LT4-supplemented (N=25) vs Placebo (N=20)

No difference for

- ADC
- FA
- Length or numbers of streamlines
Possible effects of very low or very high plasma FT4 concentrations over first 4 weeks of life

Very LOW plasma FT4 concentrations:
- Q1 vs Q2-Q4 for placebo (N = 19)

Very HIGH plasma FT4 concentrations:
- Q4 vs Q1-Q3 for LT4-supplemented (N = 23)
Effect of low FT4: Placebo group (N=19)

<table>
<thead>
<tr>
<th></th>
<th>Q1 Mean FT4 range 1.95-6.40 pmol/L N=5</th>
<th>Q2-Q4 Mean FT4 range 6.84-25.50 pmol/L N=14</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestation (w)</td>
<td>24.7</td>
<td>26.4</td>
<td>p<0.01</td>
</tr>
<tr>
<td>Birth weight (Kg)</td>
<td>0.77</td>
<td>0.89</td>
<td>p=0.04</td>
</tr>
<tr>
<td>Mortality (%)</td>
<td>50.0</td>
<td>14.6</td>
<td>p=0.01</td>
</tr>
<tr>
<td>Subarachnoid space width at 36 w CGA (Q1 vs Q2-4)</td>
<td>Mean difference +5 mm (95% CI 0.2 – 9.0)</td>
<td></td>
<td>p=0.04</td>
</tr>
</tbody>
</table>
Effect of low FT4: Unsupplemented group

MRI data

<table>
<thead>
<tr>
<th></th>
<th>Q1: Mean FT4 range 1.95-6.40 pmol/L N=5</th>
<th>Q2-Q4: Mean FT4 range 6.84-25.50 pmol/L N=14</th>
<th>p=0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC, corpus callosum</td>
<td>1.72 ±0.14</td>
<td>1.53 ±0.17</td>
<td></td>
</tr>
<tr>
<td>FA (Q1 vs Q2-4)</td>
<td>lower values in all eight brain regions (no sig diff)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streamlines (Q1 vs Q2- Q4)</td>
<td>shorter and less numerous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streamline number through right internal capsule</td>
<td>223 ±65</td>
<td>299 ±68</td>
<td>P=0.02</td>
</tr>
</tbody>
</table>
Effect of high FT4: LT4-supplemented (N=23)

<table>
<thead>
<tr>
<th></th>
<th>Q1-Q3 N=17</th>
<th>Q4 N=6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC, left occipital lobe</td>
<td>1.78 ±0.14,</td>
<td>1.58 ±0.14</td>
</tr>
<tr>
<td>FA, anterior corpus callosum</td>
<td>0.32 ±0.05</td>
<td>0.39 ±0.03</td>
</tr>
</tbody>
</table>

For Q4 vs Q1-3, streamlines passing through every brain region were longer and more numerous

<table>
<thead>
<tr>
<th>Ant’r corpus callosum (No of streamlines)</th>
<th>56 ±16</th>
<th>109 ±28</th>
<th>p<0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant’r corpus callosum (Length of streamlines)</td>
<td>23 ±6</td>
<td>35 ±5</td>
<td>p<0.001</td>
</tr>
</tbody>
</table>
Conclusion

- Brain MRI data suggests decreased organization of white matter for babies <28w with low plasma FT4 during first 4 w after birth

- Prospective studies of LT4-supplementation should target extremely preterm infants with very low plasma FT4 during days after birth
1. Context
2. Study #1
3. Study #2
1. Context
2. Study #1
3. Study #2